茶黄素-3-没食子酸酯

    
分析标准品,HPLC≥98%

Theaflavin-3-gallate

源叶
B20143 一键复制产品信息
30462-34-1
C36H28O16
716.6
货号 规格 价格 上海 北京 武汉 南京 购买数量
B20143-5mg 分析标准品,HPLC≥98% ¥800.00 >10 - - -
B20143-10mg 分析标准品,HPLC≥98% ¥1350.00 >10 2 - 1
B20143-20mg 分析标准品,HPLC≥98% ¥2400.00 >10 2 - -
产品介绍 参考文献(58篇) 质检证书(COA) 摩尔浓度计算器 相关产品

产品介绍

沸点: 1173.6°C at 760 mmHg
外观: 棕黄色粉末
溶解性: 可溶于甲醇、乙醇、DMSO等有机溶剂。
储存条件: 2-8℃
注意: 部分产品我司仅能提供部分信息,我司不保证所提供信息的权威性,仅供客户参考交流研究之用。

参考文献(58篇)

53. [IF=7.7] Maiquan Li et al."Study on the synergistical effects of characteristic compounds in Osmanthus black tea against xanthine oxidase based on multispectral analysis combined with in silico studies."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES.2025 May;3 52. [IF=8.5] Mingchun Wen et al."Developed metabolomics approach reveals the non-volatile color-contributing metabolites during Keemun congou black tea processing."FOOD CHEMISTRY.2025 Jan;463:141222 51. [IF=4] Xiaoyan Shen et al."Oxidation characteristics of catechins in suspended fermentation of different varieties’ tea leaves."JOURNAL OF FOOD COMPOSITION AND ANALYSIS.2024 Aug;:106596 50. [IF=4.8] Zixin Zhao et al."Extraction effects of eight deep eutectic solvents on dianhong black tea: From chemical composition analysis to antioxidant and α-glucosidase inhibitory assessments."Food Bioscience.2024 Oct;61:104923 49. [IF=6] Zhe Wang et al."High-throughput screening, “protein–metabolite” interaction, and hypoglycemic effect investigations of α-amylase inhibitors in teas using an affinity selection-mass spectrometry method."LWT-FOOD SCIENCE AND TECHNOLOGY.2024 Jul;203:116392 48. [IF=6.1] Hanchen Zhou et al."The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature."Food Chemistry-X".2024 Jun;22:101371 47. [IF=4.3] Xin Guan et al."Variation of taste and odor compounds in tea beverage after microbial fermentation by HPLC–MS, GC×GC–O–MS, GC–MS, and sensory evaluation."JOURNAL OF FOOD COMPOSITION AND ANALYSIS".2024 Apr;128:106075 46. [IF=6.1] Piaopiao Long et al."The effects of tea plant age on the color, taste, and chemical characteristics of Yunnan Congou black tea by multi-spectral omics insight."Food Chemistry-X".2024 Mar;21:101190 45. [IF=8.8] Shengxiao Su et al."Chemical, sensory and biological variations of black tea under different drying temperatures."FOOD CHEMISTRY".2024 Jul;446:138827 44. [IF=6] Shimao Fang et al."Ancient tea plants black tea taste determinants and their changes over manufacturing processes."LWT-FOOD SCIENCE AND TECHNOLOGY.2024 Jan;:115750 43. [IF=8.2] Lan Zhang et al."The substitution sites of hydroxyl and galloyl groups determine the inhibitory activity of human pancreatic α-amylase in twelve tea polyphenol monomers."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES.2024 Feb;259:129189 42. [IF=5.2] Li Lian et al."Molar ratio of (-)-epicatechin and (-)-epigallocatechin gallate determined their enzymatic oxidation products and color characteristics."Food Bioscience.2024 Feb;57:103480 41. [IF=8.8] Zixuan Xie et al."Mechanism of aroma enhancement methods in accelerating Congou black tea acidification subjected to room temperature storage."FOOD CHEMISTRY.2023 Nov;:137837 40. [IF=6.1] Shan Zhang et al."The influence of rolling pressure on the changes in non-volatile compounds and sensory quality of congou black tea: The combination of metabolomics, E-tongue, and chromatic differences analyses."Food Chemistry-X.2023 Nov;:100989 39. [IF=8.8] Duoduo Zhang et al."Quality analysis of steamed beef with black tea and the mechanism of action of main active ingredients of black tea on myofibrillar protein."FOOD CHEMISTRY.2023 Nov;:137997 38. [IF=5] Jian-Chang Jin et al."Widely targeted metabolomics reveals the effect of different raw materials and drying methods on the quality of instant tea."Frontiers in Nutrition.2023; 10: 1236216 37. [IF=6] Cuinan Yue et al."UPLC–QTOF/MS-based non-targeted metabolomics coupled with the quality component, QDA, to reveal the taste and metabolite characteristics of six types of Congou black tea."LWT-FOOD SCIENCE AND TECHNOLOGY.2023 Aug;185:115197 36. [IF=4.3] Jiasheng Huang et al."The inhibitory effect and mechanism of theaflavins on fluoride transport and uptake in HIEC-6 cell model."FOOD AND CHEMICAL TOXICOLOGY.2023 Jul;:113939 35. [IF=5.2] Zhuanrong Wu et al."Effects of Sun Withering Degree on Black Tea Quality Revealed via Non-Targeted Metabolomics."Foods.2023 Jan;12(12):2430 34. [IF=6.443] Yuchuan Li et al."Study on taste quality formation and leaf conducting tissue changes in six types of tea during their manufacturing processes."Food Chemistry-X.2023 Jun;18:100731 33. [IF=6.449] Shengkai Luo et al."Proteolytic activation and characterization of recombinant polyphenol oxidase from Rosa chinensis for efficient synthesis of theaflavins."INDUSTRIAL CROPS AND PRODUCTS.2023 Sep;200:116810 32. [IF=1.967] ke Zunli et al."Physicochemical characteristics, polyphenols and antioxidant activities of Dimocarpus longan grown in different geographical locations."ANALYTICAL SCIENCES.2023 Apr;:1-8 31. [IF=4.52] Yue-Yue Chang et al."Targeted metabolites analysis and variety discrimination of Wuyi rock tea by using a whole-process chemometric-assisted HPLC-DAD strategy."JOURNAL OF FOOD COMPOSITION AND ANALYSIS.2023 Aug;121:105365 30. [IF=9.231] Jianjian Gao et al."High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method."FOOD CHEMISTRY.2023 Oct;422:136179 29. [IF=7.425] Jie Zhou et al."Widely targeted metabolomics using UPLC-QTRAP-MS/MS reveals chemical changes during the processing of black tea from the cultivar Camellia sinensis (L.) O. Kuntze cv. Huangjinya."FOOD RESEARCH INTERNATIONAL.2022 Dec;162:112169 28. [IF=5.561] Jiazheng Lin et al."Effect of the Presence of Stem on Quality of Oolong Tea."Foods.2022 Jan;11(21):3439 27. [IF=7.425] Xiong Gao et al."Chemical composition and anti-inflammatory activity of water extract from black cocoa tea (Camellia ptilophylla)."FOOD RESEARCH INTERNATIONAL.2022 Aug;:111831 26. [IF=7.077] Xueqin Gao et al."Evaluation of coloration, nitrite residue and antioxidant capacity of theaflavins, tea polyphenols in cured sausage."MEAT SCIENCE.2022 Oct;192:108877 25. [IF=5.396] Chunyin Qin et al."Comparison on the chemical composition, antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion."Food & Function. 2022 Apr;: 24. [IF=5.279] Wei Wang et al."Effect of Active Groups and Oxidative Dimerization on the Antimelanogenic Activity of Catechins and Their Dimeric Oxidation Products."J Agr Food Chem. 2022;70(4):1304–1315 23. [IF=6.475] Guoping Lai et al."Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing."Food Res Int. 2022 May;155:111041 22. [IF=2.863] Xiaokang Liu et al."Spectrum–effect relationship between ultra-high-performance liquid chromatography fingerprints and antioxidant activities of Lophatherum gracile Brongn."Food Science & Nutrition. 2022 Feb 22 21. [IF=7.514] Yuqing Cui et al."Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV–visible spectroscopy and mass spectrometry."Food Chem. 2022 Aug;386:132788 20. [IF=2.19] Xiaofen Wu et al."Effect of fermentation time and temperature on the of polyphenol compounds change of different Congou black tea."J Food Process Pres. 2021 Oct;45(10):e15844 19. [IF=3.638] Shimao Fang et al."Geographical origin traceability of Keemun black tea based on its non-volatile composition combined with chemometrics."J Sci Food Agr. 2019 Dec;99(15):6937-6943 18. [IF=3.701] Lingling Tai et al."Anti-hyperuricemic effects of three theaflavins isolated from black tea in hyperuricemic mice."J Funct Foods. 2020 Mar;66:103803 17. [IF=4.192] Wenji Zhang et al."Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein."J Agr Food Chem. 2020;68(9):2673–2683 16. [IF=4.653] Fengfeng Qu et al."Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice."Mol Nutr Food Res. 2019 Sep;63(17):1801039 15. [IF=4.952] Fengfeng Qu et al."The new insight into the influence of fermentation temperature on quality and bioactivities of black tea."Lwt Food Sci Technol. 2020 Jan;117:108646 14. [IF=4.952] Jinjie Hua et al."Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation."Lwt Food Sci Technol. 2021 Mar;139:110291 13. [IF=6.419] Fengfeng Qu et al."Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer."Drug Deliv. 2021;28(1):1737-1747 12. [IF=6.475] Mingchun Wen et al."Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing."Food Res Int. 2021 Oct;148:110588 11. [IF=7.514] Ai Huang et al."Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of keemun black tea."Food Chem. 2021 Oct;359:129950 10. [IF=7.514] Mingchun Wen et al."Identification of 4-O-p-coumaroylquinic acid as astringent compound of Keemun black tea by efficient integrated approaches of mass spectrometry, turbidity analysis and sensory evaluation."Food Chem. 2022 Jan;368:130803 9. [IF=2.769] Guobin Xia et al."Tannase-mediated biotransformation assisted separation and purification of theaflavin and epigallocatechin by high speed counter current chromatography and preparative high performance liquid chromatography: A comparative study."Microsc 8. [IF=4.952] Fengfeng Qu et al."Effect of different drying methods on the sensory quality and chemical components of black tea."Lwt Food Sci Technol. 2019 Jan;99:112 7. [IF=7.514] Xuemei Guo et al."An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glucosidase and α-amylase."Food Chem. 2018 Apr;2 6. Hua, Jinjie, et al. "Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation." LWT 139 (2021): 110291.https://doi.org/10.1016/j.lwt.2020.110291 5. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039 4. Liang Zhang, Jânio Sousa Santos, Thiago Mendanha Cruz, Mariza Boscacci Marques, Mariana Araújo Vieira do Carmo, Luciana Azevedo, Yijun Wang, Daniel Granato, Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the ph 3. Tai, Lingling, et al. "Anti-hyperuricemic effects of three theaflavins isolated from black tea in hyperuricemic mice." Journal of Functional Foods 66 (2020): 103803.https://doi.org/10.1016/j.jff.2020.103803 2. Fang, Shimao, et al. "Geographical origin traceability of Keemun black tea based on its non‐volatile composition combined with chemometrics." Journal of the Science of Food and Agriculture 99.15 (2019): 6937-6943.https://doi.org/10.1002/jsfa.9982 1. 潘顺顺 赖幸菲 孙伶俐 黎秋华 向丽敏 孙世利.不同季节翠玉品种3大茶类生化成分及抗氧化活性研究[J].食品研究与开发 2017 38(09):22-27.

质检证书(COA)

如何获取质检证书(COA)?
请输入货号和一个与之匹配的批号。
例如:
批号:JS298415 货号:S20001-25g
在货品标签上如何找到货号和批号?

摩尔浓度计算器

质量 (mg) = 浓度 (mM) x 体积 (mL) x 分子摩尔量 (g/mol)

=
×
×

相关产品